Latest Govt Job-Vacancy Always

Latest Govt Job-Vacancy Always

Formula for common geometric shapes for GK

Formulas of Common Geometric Shapes 

 

Geomatric Shapes Formula

 

Formulas of Common Geometric  Shapes 

(2D and 3D) (With Diagrams)

(Easy GK Notes for School & Competitive Exam Students)

Understanding basic geometry shapes is important for GK, Maths, and entrance exams. Below are simple formulas with diagram examples to make learning easy.


🟩 2D Shapes (Flat Figures)

Shape Diagram Formula
Square Area = a²
Perimeter = 4a
Rectangle Area = l × b
Perimeter = 2(l + b)
Triangle 🔺 Area = ½ × base × height
Perimeter = a + b + c
Circle Area = πr²
Circumference = 2πr
Parallelogram Area = base × height
Perimeter = 2(a + b)
Trapezium (Trapezoid) Area = ½ × (sum of parallel sides) × height

Formula for Common Geometric Shapes

🟦 3D Shapes (Solid Figures)

Shape Diagram Formula
Cube ◼️ Volume = a³
Surface Area = 6a²
Cuboid 📦 Volume = l × b × h
Surface Area = 2(lb + bh + hl)
Cylinder 🧯 Volume = πr²h
Surface Area = 2πr(h + r)
Cone 🍦 Volume = ⅓πr²h
Surface Area = πr(l + r)
Sphere Volume = ⁴⁄₃πr³
Surface Area = 4πr²
Hemisphere 🥣 Volume = ⅔πr³
Surface Area = 3πr²

 

 Quick Tips for Students:

  • Use π = 3.14 or 22/7.

  • Area is always in square units (cm², m²).

  • Volume is in cubic units (cm³, m³).

  • Draw and label shapes while learning to avoid confusion.

 

Formula for Common Geometric Shapes

Formula in Nutshell

Algebra Formulas

Formula Type Formula
(a + b)² a² + 2ab + b²
(a − b)² a² − 2ab + b²
a² − b² (a + b)(a − b)
(a + b + c)² a² + b² + c² + 2(ab + bc + ca)
(a + b)³ a³ + 3a²b + 3ab² + b³
a³ + b³ (a + b)(a² − ab + b²)
a³ − b³ (a − b)(a² + ab + b²)

 

Tip for Exams

  • Memorize π = 22/7 or 3.14

  • Know Pythagoras Theorem: a² + b² = c²

  • Learn unit conversions:

    • 1 km = 1000 m

    • 1 m = 100 cm

    • 1 litre = 1000 ml

 

Geometry Formulas (3D Shapes / Mensuration)

Solid Shape Diagram Volume Surface Area
Cube 6a²
Cuboid 📦 l × b × h 2(lb + bh + hl)
Cylinder 🧯 πr²h 2πr(h + r)
Cone 🔺 (3D) (1/3)πr²h πr(l + r) where l = √(r² + h²)
Sphere (4/3)πr³ 4πr²
Hemisphere ⚪⬇ (2/3)πr³ 3πr² (TSA), 2πr² (CSA)

📘  Trigonometry (Basic)

Ratio Formula
sinθ Perpendicular / Hypotenuse
cosθ Base / Hypotenuse
tanθ Perpendicular / Base
cotθ 1 / tanθ
secθ 1 / cosθ
cosecθ 1 / sinθ

Important Identities:

  • sin²θ + cos²θ = 1

  • 1 + tan²θ = sec²θ

  • 1 + cot²θ = cosec²θ

 

Pythagoras Theorem (पाइथागोरस प्रमेय) – आसान भाषा में समझिए

📘 परिचय (Introduction)

पाइथागोरस प्रमेय (Pythagoras Theorem) गणित का एक बहुत ही महत्वपूर्ण सूत्र है, खासकर त्रिभुज (Triangle) के अध्याय में।
यह प्रमेय केवल समकोण त्रिभुज (Right-Angled Triangle) पर लागू होता है।
यह प्रमेय प्राचीन यूनानी गणितज्ञ पाइथागोरस (Pythagoras) द्वारा खोजा गया था।

पाइथागोरस प्रमेय क्या कहता है? (What the Theorem Says)

हिंदी में:
किसी समकोण त्रिभुज में, कर्ण (Hypotenuse) की लंबाई का वर्ग, अन्य दो भुजाओं (Base और Perpendicular) के वर्गों के योग के बराबर होता है।

English Version:
In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides (base and perpendicular).

Formula (सूत्र)

Hypotenuse2=Square of Base +Square of Perpendicular

Pythagorus